Robust and Superhydrophobic PTFE Membranes with Crosshatched Nanofibers for Membrane Distillation and Carbon Dioxide Stripping

نویسندگان

چکیده

Polytetrafluoroethylene (PTFE) nanofiber membranes with novel crosshatched structures are developed and applied to both water desalination by direct contact membrane distillation (MD) CO2 separation gas absorption. Crosshatched produced from a PTFE-poly(ethylene oxide)(PEO) emulsion depositing alternating layers of aligned fibers oriented in perpendicular directions. This is followed sintering remove the PEO stabilize structure. The structure allows for rapid vapor transport due low tortuosity high porosity, leading fast effective separation. PTFE these ideal stripping as this polymer inherently strong very hydrophobic. mass transfer MD greatly improved nanofibers (CNF) well composite microparticles (CNF-MP), compared conventional random nanofibers. exhibit flux up 98.5 ± 1.2 kg m−2h−1, significantly greater than standard asymmetric morphology, when tested 3.5 wt% sodium chloride feed solution at 80 °C 20 °C.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication and Characterization of Polyetherimide Hollow Fiber Membrane Contactor for Carbon Dioxide Stripping from Monoethanolamine Solution

In this research, process asymmetric polyetherimide hollow fiber membranes using ethanol (0, 2 and 4 wt%) as non-solvent additive in the polymer dope via phase inversion method were fabricated. Aqueous solution of 1-methyl-2-pyrrolidine (NMP) (90%) was applied as a bore fluid to avoid inner skin layer formation and water was used as the external coagulant. The morphology of fabricated membranes...

متن کامل

Polyvinylidene Fluoride Hollow Fiber Membrane Contactor Incorporating Surface Modifying Macromolecule for Carbon Dioxide Stripping from Water

Porous surface modified polyvinylidene ï‌‚uoride (PVDF) hollow fiber membranes are fabricated through a dry-wet phased inversion process. Surface modifying macromolecules (SMM) (1 wt. %) are used as additives in the spinning dope. The performance of the surface modified membrane in contactor application for CO2 stripping from water is assessed through the fabricated gas–liquid membrane contacto...

متن کامل

fabrication and characterization of polyetherimide hollow fiber membrane contactor for carbon dioxide stripping from monoethanolamine solution

in this research, process asymmetric polyetherimide hollow fiber membranes using ethanol (0, 2 and 4 wt%) as non-solvent additive in the polymer dope via phase inversion method were fabricated. aqueous solution of 1-methyl-2-pyrrolidine (nmp) (90%) was applied as a bore fluid to avoid inner skin layer formation and water was used as the external coagulant. the morphology of fabricated membranes...

متن کامل

Study on Commercial Membranes and Sweeping Gas Membrane Distillation for Concentrating of Glucose Syrup

In this work, sweeping gas membrane distillation (SGMD) process was used for concentrating of glucose syrup. The main questions in this work include: is SGMD process practical for concentrating of glucose solution prior the fermentation step in bioethanol process?. and are the commercially available hydrophobic membranes sufficient enough to develop the SGMD process in pilot scale for this issu...

متن کامل

Membrane Distillation for Water Recovery and Its Fouling Phenomena

The total volume of water on Earth is circa 300 million cubic miles, with close to 98.0% being salt water and the remaining 2.0% fresh water. It has been increasingly more challenging to harvest fresh water from surface water, seawater and even from wastewater due to the combination of factors, viz. burgeoning population growth, rapid industrialization and climate change. Recently, membrane dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advanced Materials Interfaces

سال: 2022

ISSN: ['2196-7350']

DOI: https://doi.org/10.1002/admi.202200786